Symplectic spatial integration schemes for systems of balance equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of two integration schemes for a micropolar plasticity model

Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...

متن کامل

Symplectic Integration of Hamiltonian Wave Equations

The numerical integration of a wide class of Hamiltonian partial diierential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of diierent explicit splitting methods are analyzed, and we give the circumstance...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

Central Schemes for Systems of Balance Laws

Several models in mathematical physics are described by quasilin ear hyperbolic systems with source term which in several cases may become sti Here a suitable central numerical scheme for such problems is developed and application to shallow water equations Broadwell model and Extended Thermodynamics are mentioned The numerical methods are a generalization of the Nessyahu Tadmor scheme to the n...

متن کامل

Symplectic Integration of Constrained Hamiltonian Systems

A Hamiltonian system in potential form (H(q, p) = p'M~ 'p/2 + E(q)) subject to smooth constraints on q can be viewed as a Hamiltonian system on a manifold, but numerical computations must be performed in R" . In this paper, methods which reduce "Hamiltonian differential-algebraic equations" to ODEs in Euclidean space are examined. The authors study the construction of canonical parametrizations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Process Control

سال: 2017

ISSN: 0959-1524

DOI: 10.1016/j.jprocont.2016.12.005